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Abstract

The following is a valid model for an important class of scheduling and

routing problems. A salesman who travels between pairs of cities at a cost

depending only on the pair, gets a prize in every city that he visits and

pays a penalty to every city that he fails to visit, wishes to minimize his

travel costs and penalties, while visiting enough cities to collect a

prescribed amount of prize money. We call this problem the Prize

Collecting Traveling Salesman Problem (PCTSP).

This paper discusses structural properties of the PCTS polytope, the

convex hull of solutions to the PCTSP. In particular, it identifies several

families of facet defining inequalities for this polytope. Some of these

inequalities are related to facets of the ordinary TS polytope, others to

facets of the knapsack polytope. They can be used in algorithms for the

PCTSP either as cutting planes or as ingredients of a Lagrangean

optimand.
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1. Introduction

A number of scheduling and routing problems can be formulated as

the following generalization of the traveling salesman problem.

A traveling salesman who gets a prize wi in every city k that he

visits and pays a penalty pi for every city I that he fails to visit, and

who travels between cities i and j at cost cI p wants to minimize the

sum of his travel costs and penalties, while including in his tour enough

cities to collect a prescribed amount w, of prize money.

If we let yj be 1 if city i is included in the tour and 0 otherwise,

and let x be the incidence vector of the tour, then our problem can be

formulated on a complete directed graph G' = (N, A) as

(1.1') min E I cljxij + I P(I - Yl)
IaN jaN-{} IM

subject to

(1.2') Z x-{ -

I Xtj - yj 0 i = 1, ... ,n

(1.3') I w{y1  w0

IBMN

(1.4') y, a (0, 1}, i c N; xij t {0, 1}, (i, j) a A

(1.5') G'(y, x) is a cycle.

Here G'(y, x) is the subgraph of G' whose nodes and arcs are those

defined by y and x, respectively, and by cycle we mean a closed

directed path.

It is convenient to complement the variables yl, i a N, i.e. introduce

n new variables xi -- 1 - yl, i a N, to be interpreted as representing

the loops (arcs whose head and tail are identical) of a graph
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G = (N, A u 0) obtained from G' by endowing every node with a loop

(0 is the set of luGpa). The incidence vector (y, x) s (0, 1)"a of nodes

and arcs of G' is then replaced by the incidence vector x 1 (0, 1} of

loops and arcs of G. If we define cl: Pi, i a N, and U I w, -w ,

the problem can be restated as

n 
n

(1.1) min I ctjxtj
1=1 J=1

n
IXj=l i=i, ... , n

J=1
(1.2)

Xij 1 j = , ... ,n

11

(1.4) xlj a {0, U}i ,.. n

(1.5) G(x) has exactly one cycle of length > 2.

Here G(x) is the subgraph of G with node set N and loop-and-

arc-set defined by x. Notice that the lower bounding constraint on the

weighted sum of nodes to be included into the cycle of G'(y, x) has now

become an upper bounding constraint on the weighted sum of loops of

G(x). Notice also that for U < min w i our problem becomes a TSP.

A typical solution to a PCTSP on 5 nodes is shown in Figure 1.

We formulated this problem in the spring of 1985 as a model for

scheduling the daily operation of a steel rolling mill, and called it the

Prize Collecting Traveling Salesman Problem (PCTSP). A rolling mill

produces steel sheet from slabs by hot or cold rolling. For reasons

that have to do with the wear and tear of the rolls as well as other

factors, the sequence in which various orders are processed is essential.

Scheduling a round consists of choosing from an inventory of slabs
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assigned to orders, a collection that satisfies a lower bound on total

weight, and ordering it into an appropriate sequence. Since the choice

of slabs for the round limits the options available for their sequencing,

the two tasks must be solved jointly. The PCTSP as a model captures

the essential features of this problem. It served as the basis for an

approach that was implemented in 1985 - 1986 by Balas and Martin (12]

into a software package for scheduling steel rolling mills. The package

..ses a combination of several heuristics to find near-optimal solutions to

a PCTSP and organize them into rounds, i.e. daily schedules.

I G(X)

Figure 1.

In this paper we study the structural properties of PCTSP; in

particular, we identify several families of facet in~ducing inequalities for

the PCTS polytope, the convex hull of solutions to PCTSP. Some of

these facets are related to facets of the common TS polytope, others to

facets of the knapsack polytope. The facets that we describe can be

used in an algorithm for the PCTSP either as cutting planes appended

to a linear programming relaxation to be solved by the simplex method,

as done for the symmetric TSP by Padberg and Hong (11]; or as
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inequalities taken into the objective function of a Lagrangean dual with

appropriate multipliers, as done for the asymmetric TSP by Balsa and

Christofides (3]. Either approach requires of course some procedure for

identifying inequalities violated by a given solution to the relaxed

problem, and although we see no major difficulties in adapting to our

case the corresponding procedures developed for the TSP, this task is

not addressed in the present paper.

An early version of our results was presented at the April 1986

ORSA/TIMS meeting in Los Angeles (2].

As a way to investigate the structure of the PCTS polytope, we will

examine a family of interrelated polytopes that form a hierarchy:

AP cony ( x z {0, 1}"n I x satisfies (1.2) }

KP := cony { x z (0, 1}n I x satisfies (1.3) }

PO cony { x r AP I x satisfies (1.5) }

KAP := AP n KP

= cony ( x t AP I x satisfies (1.3) }

P* :=P.n KAP

= cony { x & AP I x satisfies (1.5) and (1.3) }

The first member of the family, AP, is the assignment polytope, i.e.

the convex hull of incidence vectors of all spanning unions of

(directed) cycles (where loops are considered cycles of length one).

This is known to be a "friendly" polytope, in that

AP = ( x t W'2 I x > 0 and x satisfies (1.2) }

The next polytope, KP, is the 0-1 knapsack polytope defined by the

constraint (1.3) on the loop variables x, 1 , i a N, with the arc variables

xi j unconstrained (except for the 0-1 condition). Although this polytope
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has exponentially many facets, a lot is known about its structure.

The polytope P. is obtained from AP by restricting the set of

assignments (spanning unions of cycles) to those having exactly one

cycle of length greater than one. This polytope will be our starting

point for investigating the family of facet defining inequalities related to

the well known subtour elimination constraints of the TS polytope. Its

study is the subject of Section 2.

The polytope KAP is obtained from the assignment polytope by

imposing the knapsack constraint (1.3). The resulting structure, which

we call the Knapsack-Constrained Assignment Polytope, provides us with

a starting point for examining the family of facets related to those of

the 0 - 1 knapsack polytope. This is the subject of Section 3.

. The next polytope, P*, is the PCTS polytope itself. Its study, based

on the results of Sections 2 and 3, is the subject of Section 4.

The hierarchical relations between these polytopes are illustrated in

Figure 2, where S 4 T represents the inclusion S 3 T.

AP - p

KP -o KA P

Figure 2

We will sometimes be interested in looking at what is known as the

nonotonized version of the above polytopes. For instance, KAP, the

monotonization of KAP, is obtained from KAP be replacing the = in (1.2)

by _ . The monotonization of the other polytopes is defined in the same
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manner.

We recall that given an arbitrary polytope P, a face of P is the

intersection of P with some of its supporting hyperplanes. If dim P

denotes the dimension of P, a facet of P is a face of dimension

dim P- 1. An inequality ax < 0o is said to be vaid for P if it is

satisfied by all x a P; and facet defining for P if P n (x I ax = o} is a

facet of P.

2. The Polytope P.

We now turn to the polytope

PO:= conv { x t {O, 11"a I x satisfies (1.2) and (1.5)).

For every x a P., G(x) has exactly one cycle of length > 2. To

distinguish this cycle from the loops (which are cycles of length 1) we

will refer to it as the long cycle of G(x).

Proposition 2.1 dim P. = (n-1) 2 .

Proof. The constraint set defining P. has n2 variables and 2n

explicitly given equations that form a system of rank 2n - 1. Thus

dim P0 < n 2 - 2n + I = (n-1) 2 . We will show that this bound is tight be

exhibiting (n-i)2 + 1 affinely independent points x a P0.

For x, j = 0, 1 a N, P. becomes the traveling salesman polytope on

G, whose dimension is known (see Grotschel and Padberg [6]) to be the

same as that of the corresponding assignment polytope, i.e. n(n - 1) -

2n + 1 = n2 - 3n + 1; hence there exists a set of n 2 - 3n + 2 affinely

independent points xr z P, such that xT, = 0 for all i v N. Take an

additional n points x8 a P., one for each s z N, such that xf, = 1 for

i = a and xT, = 0 for i a N - (s). Such points obviously exist (for each

such x6, the long cycle of G(xS) contains all nodes except s), and
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together with the points xr they form an affinely independent set of

cardinality n 2 - 3n + 2 + n = (n-i) 2 + 1.1

Next we identify a class of facet defining inequalities for P. which

are related to the subtour elimination constraints for the traveling

salesman polytope. If not otherwise stated, we assume that n > 3.

Theorem 2.2 For all S c N, 2 < ISI n 1, and all k t S,

U N \ S, the inequality

(2.1) E x j + x xil -x** IsI - 1
Its jes-{I} ,ts-{k}

is valid for P0 . Further, for IsI <_ n - 2, (2.1) defines a facet of P..

Proof. If x violates (2.1), then the long cycle of G(x) has its node

set in S and contains node k, while node I & N \ S has no loop in G(x);

hence x j P,. This proves the validity of (2.1) for P0 .

To prove that for ISI < n - 2 (2.1) is facet defining, let n > 4 and

let P0 be the traveling salesman polytope associated with P., i.e.

Pk : = PO n jx I xjj = 0, i a N}. The inequality obtained from (2.1) by

setting x11 = 0, i a N, i.e. the subtour elimination inequality asso-

ciated with S, is known (see Grotschel [5]) to be facet defining for P0

if 2 < ISI < n - 2. Since dim P. = n(n - 1) - 2n + 1, there are

n - 3n + 1 affinely independent points x r v P0, with xj- 0 for all

i a N, satisfying (2.1) as equality.

Next consider IS I - 1 points x- a P., one for each s z S - (k, such

that the only loop of G(xs) is at node a, and all remaining nodes belong

to the long cycle. Then x, = 1, xf= 0 for all i t N - (s), and xIj = 1

for exactly ISI - 2 pairs i, j z S - {s}, i j, i.e. x8 satisfies (2.1) with

equality. Such x3 obviously exists for each s a S.

7



Further, consider n - I - i points xt a P., one for each

t a N \ (S u (S)), such that the only loop of G(xt) is at node t and all

remaining nodes belong to the long cycle. Then xtt = 1, xj It 0 for all

i a N - (t), and xij = 1 for exactly Isi - 1 pairs i, j a S, i $ j, i.e. xt

satisfies (2.1) with equality. Again, such xt clearly exists for each

t a N \ (S u (A}).

Finally, we need two more points, for the indices k and S. Let xk

be such that xV1  1 for i a S, xV I 0 for i a N \ S, and N \ S is the

node set of the cycle of G(xk); and let x4 be such that xf = 1 for

i a N \ S, xfi = 0 for i a S, and S is the node set of the cycle of G(xt).

Clearly, xk, xj t P. and both vectors satisfy (2.1) as equality.

It is now easy to see that the matrix whose rows are the vectors xg,

s & S - (k), x t , t a N \ (S u (1)), xk and xi, is of the form (V, T),

where T is n x n, with columns corresponding to the variables xj ,

i a N, and T is lower triangular up to row and column permutations. If

W is the matrix whose rows are the n 2 - 3n + I affinely independent

points of P considered at the beginning of this proof, then the matrix

whose rows are the extensions xr of these points to P., plus the

vectors x s , xt, xk, x1, is of the form

V T '

where W is of rank n 2 - 3n + 1 and T is of rank n. Clearly X is of

rank (n-1)2 , which proves that (2.1) defines a facet of Po.

Corollary 2.3. For all S c N, 2 < I S I_ n - 1 and all k v S,

a a N \ S, the inequality

(2.2) 1 1 Xij + Xkk + XSA
its jtN\s

is valid for P 0 . Further, for I < n - 2 (2.2) defines a facet of P 0 .
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Proof. (2.2) can be obtained by subtracting from (2.1) the equations

nI xlj =I i zf S.A
J=1

From the above Theorem and Corollary, we now have an equivalent

expression for P.:

Corollary 2.4

SI x satisfies (2.1) for all S c N, 2< ISI - n - 1,

and all k r S, 4 z N \ S

Proof. From Theorem 2.2 and Corollary 2.3, condition (1.5) implies

(2.1) and (2.2) for all S c N, 2 < ISI n - 1. To see the converse,

suppose x a AP violates (1.5), i.e. G(x) has at least two cycles of length

> 2, with node sets S, and S2, respectively. Then x violates (2.1) and

(2.2) for S = S, and I a S2.

Sometimes the constraints of PCTSP are amended with the

requirement that a certain node, say 1, be included into the long cycle

of G(x). This is equivalent to adding the condition x,, - 0 to the

constraint set. In this case the above inequalities can be strengthened.

Theorem 2.5. For all S c N, 2 < IS n - 1, such that 1 e S, and

all 8 t N \ S, the inequality

(2.3) 1 £ x j + I Xjj - x44 _ 1St - 1
its jaS-fl) jas

is valid for P. n {x I x,, 0) and, if I S I _ n - 2, facet defining for

P0 n (x I xI = 0).

For all S c N, 2 < I S I n - 1, such that 1 v N \ S, and all k z S,

the inequality

(2.4) £ x j + I xi _ IS - 1
ICs jaS-{1} its-{k}

9



is valid for P0 o (x I x1, = 0) and, if ISI <_ n - 2, facet defining for

P, n (x I xI = 0).

Proof. Let x z P. n (x I x - 0) and let 1 a S. If S contains the

long cycle of G(x), then xjj = 1 and (2.3) is satisfied. Otherwise at

most ISI - 1 of the variables xtj, i, j z S, can be positive, and again

(2.3) is satisfied.

Now let 1 - N \ S. Then the node set of the long cycle of G(x) is

not contained in S, hence the left hand side of (2.4) is at most I SI - 1.

This proves the validity of (2.3) and (2.4) under the stated conditions.

To show that (2.3) and (2.4), when valid, are facet defining if ISI si

n - 2, we assume I S I < n - 2 and proceed as in the proof of Theorem

2.2. In that proof, we exhibited (n - 1)2 affinely independent points

x t P. that satisfy (2.1) with equality; let their set be Z. If we leave

aside for the moment the last two points exhibited, xk and xi, all but

one of the points in Z - (xk, x') lie in P. n Ix I x = 0) and satisfy

with equality both (2.3) and (2.4), the one exception being x8 for s = 1.

Discarding x1 leaves a set Z - (x I , xk, x I ) of (n - 1)2 - 3 affinely

independent points x a P0 n {x I x, I 0), two less than needed (since

dim P0 n Ix I x, I= 0) = (n - 1)2 - 1).

Now let 1 z S. Then the point xi e Z lies in P0 n (x I x, 0) and

satisfies (2.3) with equality. To obtain the last missing point, consider

j!k t P, such that the only loop of G(Ik) is at node k and all remaining

nodes belong to the long cycle (note that k $ 1 in the definition of Z).

Then 5S a P. n (x I xx I 0) and 3!k satisfies (2.3) with equality.

Furthermore, the (n - 1)2 - 1 points in (Z - (xI, xk)) u (1 k) are affinely

independent. Thus (2.3) defines a facet of P0 n (x I x,- 0).

10



Similarly, if 1 a N \ S, the point xk a Z lies in P, n (x I x, -= 0)

and satisfies (2.4) with equality. Let V a P, be such that the only loop

of G(78) is at node I and all the other nodes belong to the long cycle

(note that 4 $ 1 in the definition of Z). Then XI z P. n [x I x1 , = 0)

and 39 satisfies (2.4) with equality. Again, the points in Z - {xI, xt) U

{(i) are affinely independent, hence (2.4) defines a facet of P. n

(x I x11  o).I

As in the case of (2.1), the inequalities (2.3) and (2.4) have their

cutset-related alternative form:

Corollary 2.6 The inequalities (2.3) and (2.4) are equivalent to

(2.5) .!1 Xjj + x _il

itS JEN\S
and

(2.6) Xij +  
Xkk --

iaS JZN\S

respectively.

3. The Poltope KAP

Next we turn to the Knapsack-Constrained Assignment Polytope

AP : x C (0, 1})" 2 i x satisfies (1.2) and (1.3)).

Define

Ru :i a N I w, > U),

the set of those nodes that cannot have their loop in G(x) if x is to

satisfy (1.3). Clearly, for any x z KAP, x, 1 = 0 for all i t Ru, hence

dim KAP < dim AP - IRu.

Proposition 3.1. dim KAP = (n-1) 2 - IRuI.

Proof. One can exhibit the required number of affinely independent

points in KAP in the same way as in the proof of Proposition 2.11
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Since KAP c KP, all valid inequalities for the knapsack polytope KP

are valid for KAP. The question we address next, is whether the

inequalities that define facets of the knapsack polytope also define

facets of the corresponding Knapsack-Constrained Assignment Polytope

or its monotonization.

Facets of the 0 - 1 knapsack polytope have been extensively studied

(we refer the reader to Balas [1], Hammer, Johnson and Peled [7],

Wolsey [13], and Baelas and Zemel [4]). The best known family of facets

of the knapsack polytope KP is defined by inequalities of the form

(3.1) 1 xii + I a1 xii ISI - 1.
it s I VN\S

where ot, > 0 is integer, i & N, and where S c N is a minimal cover for

the knapsack inequality (1.3), i.e.

(3.2) 1 w, > U
I CT

holds for T = S but fails to hold for T = S - {i} for any i z S.

Let KAP denote the monotonization of KAP, as defined in Section 1.

Theorem 3.2 Suppose the inequality (3.1) defines a facet of KP.

Then (3.1) defines a facet of KAP if and only if ai > 0 for at least one

i a N \ S.

Proof. It is well known (see Padberg [10], Nemhauser and

Trotter [9]) that, given the assumptions, there exist nonnegative

integers Pip (i, j) a A, called lifting coefficients, such that the

inequality

(3.3) L Xil + I aixii + £ - Pijxij i ISI - 1
Its IzN\s iSN jaN-{i}

defines a facet of LAP. The lifting coefficients can be calculated by

solving a sequence of integer programs, one for each coefficient.
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Different lifting sequences may give rise to different coefficient values,

but a given coefficient attains its highest value when it is first in the

lifting sequence. Let Pjj denote the value obtained for P1 ,j when P1 j is

calculated before all other coefficients. We will prove the Theorem by

showing that j = 0 for all (i, j) v A if and only if a, > 0 for at least

one i x N \ S.

According to the lifting Theorem outlined above, Pjj = I SI - I -

z II, where

E WkXkk < U

klVN

Zj 
= 
maX EXkk + E QkXkk X = Xjj = 0

SkN\s Xk k  (0,1), k t N - {ij}

If ak = 0 for all k z N \ S, then for any pair i, j r S, zij = ISI -

2, hence Pjj > 0. On the other hand, if k, > I for some k N \ S, then

for any pair i, j z N, zIj = ISI - 1 and thus Pj =0.1

In the next section we will prove a stronger result (Theorem 4.7)

which implies the following:

Theorem 3.3 Suppose (3.1) defines a facet of KP and a, = 0 for at

least one i v N \ S. Then (3.1) defines a facet of KAP if and only if

aj > 0 for at least one i a N \ S.

4. The Polytope P*

Next we turn to P*, the PCTS polytope itself. Since P* is contained

in each of the polytopes discussed in Sections 2 and 3, the inequalities

of those sections are all valid for P*. As we shall see, however, some of

these inequalities can be strengthened.
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First we establish the dimension of P*. Since P* c KAP, dim P* <

(n-i)2 - IRuI, where, an in Section 3,

tRl (i & N I w, > U)

Proposition 4.1 dim P- (n-1) 2 
- IRul.

Proof. One can exhibit the required number of affinely independent

points x a P* the same way as in the proof of Proposition 2.1.1

In the sequel we will assume that IRul = 0, ie. dim P$ = (n-i) 2 .

Theorem 4.2 For S c N, 2 < ISI S n - 1, the inequality

(4.1) xj + X" ISi - 1
its jaS-{l} Its

is valid for P* if and only if

(4.2) w, >1 U
19T

holds for both T = S and T = N \ S.

Furthermore, if ISt < n - 2 and (4.1) is valid for P, then (4.1) is

facet defining for Pt.

Proof. T a P$ violates (4.1) if and only if S either contains the

node set of the long cycle of G(T), or contains no node of that cycle

(i.e. Y, = 1, i a S). In the first case, (4.2) is violated for T = N \ S,

while in the second (4.2) is violated for T = S. This proves the first

statement.

Now suppose IS I < n - 2 and (4.1) is valid. Then, as argued in the

proof of Theorem 2.2, there are (n-i) 2 - n = n2 - 3n + 1 affinely

independent points xr a P$, with xV, = 0, i = 1, ... , n, which satisfy

(4.1) with equality. Also, for each k a N, there exists xk z P with

Xk= = 1, xf I1  0, i a N - (k), and such that xk satisfies (4.1) with

14



equality. These two sets of points together clearly form a set of (n-1)2

affinely independent points in P*.l

Theorem 4.3. For Sc N,2 < IS n -, andfor all k aS, th

inequality

(4.3) t~ + xii <ISI -1
Its jes {i} 4IsS{k}

is valid for P* if and only if (4.2) holds for T =N \ S.

Furthermore, if ISI < n - 2 and (4.3) is valid for P*, then (4.3) is

facet defining for P* if and only if (4.2) does not hold for T =S.

Proof. If x a P* violates (4.3) for some S and k t S, then S

contains the long cycle of G(x), and that cycle contains node k; i.e. x11I

1, ia N \S, and Xkk:O=. But then (4.2) does not hold for T =N \S.

Conversely, if (4.2) does not hold for T =N \ S, then any x t P* such

that x1 it , i e N \ S, and x11  0, Violates (4.3) for the given S arnd

k a S. This proves the first Istataement.

Suppose now that IS I < n - 2 and (4.3) is valid for P8 . If (4.2)

holds for T = S, then (4.1) in also valid and hence (4.3) cannot be facet

defining. On the other hand, if (4.2) does not hold for T = S, one can

exhibit (n-1)2 affinely independent points x a P* that satisfy (4.3) as

equality. The first (n-1)2 
- n such points r t fo all of which have

xj 0, i t N, exist as a consequence of the fact that the traveling

salesman polytope on n nodes is (n2 -3n+ 1) -dimensional. For the

remaining n points, one for each a e N, one can proceed as follows. For

a g S - (k) and a c N S , choose x' a P* such that x:. 1, xf :0

for all i $ -; and for a k, choose x & P8 such that xI 1 for i t S,

xl 0 for i & N \ S. These n vectors x8 are the rows of a matrix

whose last n columns form a lower triangular submatrix, up to row and

cotansth ln ccl o Gx, ndtht ylecotansndek;i15 t



column permutations; and so together with the n 2 - 3n + 1 vectors xr

they form a (n-1)2 x n 2 matrix of full row rank.I

Corollary 4.4. For S c N, 2 < Si < n - 2, if (4.2) does not hold

with T = N \ S, then for every k a S and S v N \ S, the inequality

(2.1) 1 E xtj + £ xi, - xt_ ISt - I
19S js-{0} its-{k}

defines a facet of P*.

Proof. If (4.2) does not hold with T = N \ S, the argument used to

prove that (2.1) defines a facet of P. (Theorem 2.2) carries over to the

case of P$.I

From Corollaries 4.4 and 2.4, condition (1.5) in the definition of P*

can be replaced by the system (2.1), i.e. an equivalent expression for

P* is

x satisfies (1.2), (1.3) and

P* = cony x C {0, 1}-2 (2.1) for all S c N, 2 < ISI j n - 1

Sand all k a S, S r N \ S

The inequalities, (2.1), (4.3) and (4.1) can be viewed as

extensions of the subtour elimination inequalities for the traveling

salesman polytope to the PCTS polytope. The conditions under which

these extensions are valid (and facet defining) are increasingly

stringent as we move from (2.1) to (4.3) and (4.1), as each inequality in

the sequence strictly dominates its predecessors.

As in the case of the TS polytope, where the subtour elimination

inequalities have an equivalent form related to cutsets, the inequalities

(4.1), (4.3) and (2.1) for the PCTS polytope have an alternative

cutest-related form:

16



Corollary 4.5. The inequalities

(4.4) ,£ xjj > 1,its jtm\s

(4.5) £ E XlJ + Xkk >its jtm\s

and

(2.2) X i + Xkk + X44 >
its JBN\S

are equivalent to (4.1), (4.3) and (2.1), respectively: for given S (and

possibly k a S, I a N \ S), a member of the triplet (4.4), (4.5), (2.2) is

valid (facet defining) for P* if and only if the corresponding member of

the triplet (4.1), (4.3), (2.1) is valid (facet defining).

Proof. For any S c N, each of the inequalities (4.4), (4.5) and (2.2)

can be obtained by subtracting the equations jXlj = 1, i S S, from the

corresponding inequality (4.1), (4.3) or (2.1).1

If the constraints of P$ include the condition x1  - 0, then the

above inequalities can be strengthened, as in the case of P,. Note that,

as in the case of P., dim P* n Ix I x, = 0) = (n-l)2 - 1.

Corollary 4.6. For all S c N, 2 <SI< n 1, such that 1 t S, the

inequalities

(4.1) E E x1i + E xjl _ Is - 1
its jg-{ Its

and

(4.4) x ij _
tss j8w\s

are valid for PZ n (x I x = 0) if and only if

(4.2) 1w1 > U
IST

holds with T = N \ S.

Further, if IS1 < n - 2 and the inequalities (4.1), (4.4) are valid,

then they are facet defining for P$ n {x I x, 1 = 0).

17



Proof. Analogous to the proof of Theorem 4.1. Since x1 , = 0 is now

a constraint, (4.2) need not hold for T z S in order for (4.1) to be

valid. The argument used to show that (4.1) is facet defining for P*

when valid (and when ISI n - 2), carries over to P* n (x I x,= 0),

since all but one of the n - 3n + 1 affinely independent points

exhibited satisfy x1 2 = 0.1

Corollary 4.7. For all S c N, 2 < SI n -1, such that I a S, and

all * a N \ S, the inequalities

(2.3) 1 1 xt j + I - xat _si - 1
its jas-{() Its

and

(2.5) xj + x44 >
Its JCN\S

are valid for P* n (x I x1 1 = 0). Further, if ISi I_ n - 2 and (4.2) does

not hold with T = N \ S, then (2.3) and (2.5) are facet defining for P I n

(x I x1, = 0).

For all S c N, 2 < ISt < n - 1, such that 1 z N \ S, and all k t S,

the inequalities

(2.4) E r xjj + X" i ISI - 1
its jes-{1) I8s-{k}

and

(2.6) E XiJ + xkk >

ItS JaN\S

are valid for P* n ix I x , = 0), and if IsI S n - 2, facet defining for

P* n lx I x,1 = 0).

Proof. The validity of (2.3), (2.5) and (2.4), (2.6) follows from

Theorem 2.5 and Corollary 2.6, respectively, in view of P* c P.. The

fact that, when valid, these inequalities are facet defining if I SI < n - 2

(and, in the came of (2.3) and (2.5), if (4.2) does not hold with T =

N \ S), follows from the proof of Theorem 2.5 which carries over to this

case with only one change: the point z8 a Z used in that proof lies in
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P$ n {x I x, 0) only if (4.2) does not hold for T = N \ S. Hence the

condition concerning (4.2) in the above Corollary.1

Next we turn to inequalities that come from the Knapsack-

Constrained Assignment polytope.

Theorem 4.8. Suppose the inequality

(3.1) Kil + I ex _. ISi - 1,
isg IXT

where a j >0 is integer, i a T, defines a facet of KP, and N \ (S u

T) $ *. Then (3.1) defines a facet of P* if and only if T $ *.

Proof. From Theorem 3.2, (3.1) defines a facet of KAP if and only

if T $ *. The argument used in the proof of that Theorem carries over

without change to the case of P*. Hence (3.1) is facet defining for

P* if and only if T $ 4.

Assume now that T # *. Consider the equation

(3.1') £ xi + aixi, = ISi - 1
f -VS ISTl

and define

F := P* n (x Ix satisfies (3.1')}.

We will prove that F is a facet of P*, i.e. that dim F = dim P1 - 1,

by showing that for any inequality 7x < -y valid for P* and such that

7x = 7. for all x a F, the equation yx -7. is a linear combination of the

equations (1.2) and (3.1'); i.e., that there exist multipliers X1, M1j, i z N,

and -no, such that

(4.6)+ pj if i j or i = j a N \ (S u T)

(4.6) = + pj+ w if i =j t S u T
and

(4.7) 70 = . ( +,) + (ISI - 1)no.
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Consider first (i, j) t A, ie. i j. Let n a N \ (S u T) and define

kt 1 7in - 7nnt i = 1,.. n

(4.8)
AJ nJ, . = 1, n

We claim that for all i j or i j N \ (S u T),

71j = Xi + AJ

= 7 1n + 7nJ - 7nn.

For i = n, j = 1, ... , n and for j n, i = 1, ... , n, this is clearly

true. Now let i ;f n ;f j $ i, and consider x v F such that xj Xkk = I

for a given k c N \ (S u T). Such x exists for every k z N \(S u T).

Define x' by xj = 4k = 0, x k = 4j = 1, and xpq = Xpq for all other p, q.

If C is the arc set of the long cycle of G(x), then (C - {(i, j)) u ((i, k),

(k, j)) is again the arc set of a cycle; thus G(x') has exactly one long

cycle, and since the set of its loops is strictly contained in that of G(x),

x' also satisfies the knapsack constraint (1.3). Hence x' z P*. Further

since x satisfies (3.1'), so does x', i.e. x' a F. By assumption, we then

have 7x = -y = 7x', and hence 7J + 7kk =--ik + 7kJ- Since this

argument is valid for every k z N \ (S u T), we have

(4.10) 71J = 7ik + ?kj - 7 kk for all k v N \ (S u T).

In particular, for k n (4.10) becomes (4.9) and thus proves our claim.

Now let i = j a N \ (S u T). If i = n, we are done; otherwise

consider x z F such that xi I- xj 1 1 for some j i ; t. Such x

clearly exists. Define x' by z4t = x 0 0, xj x ' 1 and XYq = Xpq

for all other p, q.

Then x' a F (for the same reasons as above), hence 7x = yx' and

711 + 7j* - ? + 71j. Substituting from (4.10) for 7j*, 7jj and 7yja

with k = n then yields
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711= Vji + 714 - 7jt

- (jfi + 7ni - -/n) + (7in + 7Tn - 7nn)

- (7jn + 7n - 7nn)

-
7 1n + 7ni -- 7nn

which proves (4.9) for this case.

To prove that (4.6) also holds for i j v S u T, we define for all

ia SuT

(4.11) Ti =  (Ti - -)/-1,

where for i a S, ai = 1. We claim that all 7i are equal, i.e. 7j - r. for

all i a S u T.

Consider first two distinct nodes i, k z S u T such that ai  1.

Let x a F be such that xii = Xjk = Xk4 = 1, with i $ j k $ * ; i for

some j $ A. Such x clearly exists. Define x' by 4' 1  xJ'k = 4' 0,

XNk = qi 
= 41j = 1 and 7rq = Xpq for all other p, q. Then x' - P and

from what we know about facets of the knapsack polytope (see, for

instance, [1]), if x satisfies (1.3) then so does x'. Thus x' r F, and

since this implies /x = yx', we have

711 + 7Jk + 7ki = 7 kk + 
T
ji + 7ji.

Substituting for 7ti and 7kk from (4.11) and for 7jk, -kit 7ji, 714

from (4.9) then yields 7i = 7k"

Consider now two nodes i v S, k & T, such that ak = m for some

positive integer m > 2. The existence of such ak implies that I SI >

m + 1. Let x c F be such that x1 1 = for m distinct indices i t S,

namely i = i1, ... , i., and Xjk = xks = 1 for some j $ A. Such x clearly

exists. Define x' by xjIt = ... = x Ml = Xjk = 0 = , Xkk = xji=

x 2
= 

... = X1  = X = 1, and x' = x for all other p, q.

If C is the long cycle of G(x), then (C - ((j, k), (k, 1)) u ((j, i,),
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(it, iz), ..- , (i, 1)) is again a cycle, and so x1 P. Also, from the

theory of knapsack polytopes, if x satisfies (1.3) so does x',

hence x' t P*. Finally, since a, + "'" + ai m = k - M, if x

satisfies (3.1') so does x'. Thus x' t F, and from 7x = 7x' we have

71 fl + ... + *)1gmim + 7Jk + 7kt 
= 7 kk + 7J i + 71 02 + ... +-

Now substituting for 7 pq from (4.11) if p = q (since all such p

belong to S u T) and from (4.9) if p $ q we obtain

(T I " + + xiI+ ) + .. + (t+Xi j+ pi m) + + 1k) + (k+P4) =

(ak"k+ Xk+pk) + (X j+) I) + (X 1 +; 1 ) + ... + (X, m+Pt)

Since n x= .. = nim, after simplifying this yields mni = akitk or,

since ak = m and all 7iT with i z S are equal, whereas k v T was chosen

arbitrarily,

it = Tk = , for all i r S, k z T.

This completes the proof of (4.6).

To prove (4.7), consider X r F such that xjj = 1 for all i v S - {k}

for some k z S, Ri = 0 for all i x (N \ S) u {k}, and xi i 2
= -.

xftil for some cycle C = {(1 , i2 ), ... , (it-,, it), (it, i,)} whose

node set is {i. ... , it} = (N \ S) u {k}. Then

-Y 7x

= 711 2+ ... + 1t 1

r (xi+P 1 ) + I (X,+) + (sls - 1).

it(N\S)U{k) Zs-{k}

= (XI + .I) + (Is1 - 1)-..I

The last theorem of Section 3 (Theorem 3.3) is now a direct

consequence of Theorem 4.8.
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